EXISTENCE REGION, TRUE BULK PHASE CONCENTRATION, AND
HYDRAULIC RESISTANCE FOR AN ANNULAR FLOW OF A GAS—LIQUID
MIXTURE IN A TUBE '

¥. N. Elim UDC 532.529.5

Generzlized relationships are derived for the basic characteristics of a two-phase
annular flow.

It is possible to base reliable methods of calculating two-phase flows on generalized
relationships for the major characteristics, which can be used to close the system of equa-
tions describing the motion.

-The flow structure affects the dependence of the true bulk concentrations, the hydraulic-
resistance coefficients, and the heat-transfer ones on the definitive criteria for a two-
phase flow, so it is important to be able to determine the flow structure. In studies deal-
ing with calculation methods, a change in flow structure is related not to change in the
visually observable boundary between the phases but to change in the true volume concentra-
tions of the phases and the hydraulic-resistance coefficient as affected by the flow-rate
and other parameters. .

We have determined the changes in flow structure from a change in the dependence of the
true volume concentration on the criteria as this is a major parameter defining the hydraulic
and thermal conditions in a pipeline. The essence of the method is to derive the joint solu-
tion between twoc equations describing the relationships for the concentrations with different
structures.

To use laboratory results to calculate a real system, the relationships must be con-
structed in dimensionless form. Here a major task is to identify the definitive similarity
criteria for each structure. If there is a plug structure, the true gas content is closely
described by the Froude number and by the representation of the experimental data in the
form ¢= ¢(B; Fr) has become traditiomal [1-4], The definitive criteria for an annular flow
have repeatedly been discussed, but at present there is no agreed view on the subject.

The usual treatment is based on the true concentration as a function of flow rate and
the modified Froude number [2, 3], although measurements on vertical tubes of various diame-~
ters [4] have shown that the definitive criterion for the annular structure should be one
that does not contain the tube diameter. This condition is met by the product of the basic
similarity criteria for a two-phase flow: the Reynolds and Froude numbers. The dimensionless
combination Re;Fr is suggested as the definitive parameter for an annular structure.

This suggestion has been checked by experimental examination of the true liquid volume
content for given values of RejFr (Re, = u.D/vy; Fr = ul/gD). The gas— liquid flow took
place in a horizontal glass tube of diameter 15.2 mm and length 5.8 m at atmospheric pres-
gsure. The liquid was either water or a solution of M20 oil in diesel fuel. The viscosity
wag adjusted via the concentration. The true volume content of liquid was measured by cut-
ting off the experimental section from the pipeline. The length of the cutoff section was
7.8 m. The experiments were performed with (Re;Fr)‘/a = 140, 187, 280, and the viscosity of
the liquid varied from 1 x 10~ to 22.1 x 10™% N . sec/m*, while the speeds varied from 3 to
17 u/sec.

Figure 1 shows the results. The experimental points for various speeds and viscosities
group satisfactorily along the (Re;Fr)*/s = const lines in the range of flow rates where the
interface between the phases is only slightly perturbed. Therefore, this product can be
used in describing the experimental data on true liquid contents for annular flow structures.
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Fig. 1. Dependence of the true liquid
content on the flow-rate value and the
parameter (Re;Fr)*/s: (Re,Fr)*/s = 140:

1) y, = 1°10~° N: sec/m?; 2) 7.8+ 107%;
3) 13.1-107%; 4) 22.1° 10™3; (Re,Fr)*/s =
187: 5) uy = 1°1073%; 6) 7.8.10"%; 7)
13.1. 10"%; 8) 22.1° 10™?; (Re Fr)'/s =
24039) u, = 1/107%; 10) 7.8+ 107*; 11)
13.1-107%; 12) 22.1-107%.

To determine the dependence of the true liquid content on the tube orientation, we per-
formed experiments with air bubbling through the liquid in glass tubes with D = 15.2 and
32.7 mm with angles of inclination to the horizontal « = 1°30', 3°, 6, 10, 25 and 90°; Figure
2a shows the results for D = 15,2 mm.

In the speed range u. < 3.5-4 m/sec, one gets plug flow. There was no effect of the
tube orientation on true liquid content. At speeds u, > 3.5-4 m/sec, there was a clear-cut
boundary between the liquid and the gas. The liquid was unsymmetrically distributed with
respect to the axis (apart from the case @ = 90°). Much of it lay along the lower generator,
while the upper generator remained unwetted. Flow asymmetry persisted up to complete removal
of the liquid from the tube. :

The following is the empirical formula for the true liquid content under these circum-
stances attained by processing our results together with the data of [5], where the experi-
ments were performed with vertical tubes with variable reduced phase densities § = pa/p;: from
1.36 x 10-? to 25 x 10™%, and also the data of [4] (vertical tubes, reduced viscosities T =
ug/u; varying from1.02x 10™* to 1.27 x 107%): -

33—W

gp=0 for W3>33,

@y, = 0.0053 for W<3.3,

1)

where

' — .26 0.5 ; 143
W = 1, (Pl : ) )0 2 (.p_l._) s V= (RelFr L )
ggsino L P1—02

Experiments were performed also with an air—water flow in a tube with D = 15.2 mm with
u = 4, 6, 8, 10, 12, and 14 m/sec. The motion of mixture was ascending (o = 90°, 16°, 6°),
horizontal (¢ = 0°), or descending (¢ = —6°, —16°, —90°). The curves (Fig. 2b and c)
show that the tube orientation plays a substantial part at low speeds. The effect diminishes
as the speed rises, which is due to the increasing importance of inevitial forces relative to
gravitational ones. An increase in liquid content reduces the effects of the angle of in-

clination on q,.
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Fig. 2. True liquid content for an air-—water
mixture in tubes with various orientations: a)
bubbling; 1) e = 90°; 2) 25; 3) 10; 4) 6; 5) 3;
6) 1°30'; b) u, = 6 m/sec; c) uc = 12 m/sec: 1)

= 90°; 2) 16; 3) 6; 4) 0; 5)—6; 6) —16; 7)
-90°.

For rising motion, the ¢; = ¢3(B;; u,; @) curves make intercepts on the ordinate at
?; = @3p, Which can be found from (1). An empirical formula was derived for the true liquid
content in rising motion:

¢1 = Pup(l + 2008,) "1 ++ 5.5V V1008, - @

In descending motion, an increase in the angle of inclination reduced the true liquid
content. All the ¢; = @;(B:; u.; @) curves for B, = 0 converge on the point ¢, = 0. The
following is the empirical formuia for the true liquid content in horizontal or descending
motion of an annular flow: :

@ = 5.5[1— Jsinal'**° (1 4 3,86-107V%)~4] V7' V' 100B, . (3)

The boundary between the annular structure and the rod one is determined from the start
of deviation from a linear relationship as characteristic of the rod structure [4]. The
measurements showed that the tube orientation did not influence the position of the boundary
(see Fig. 2a for example). An increase in speed caused the ring-structure zone to extend to
higher values of B;.

We examined the data of [6] derived from steam-water flows in vertical tubes at pres-
sures of 3.5 and 7 MPa to determine the effects of pressure on the transition boundary. The
effects of the liquid viscosity were evaluated from the data of [4].

The following is the empirical equation for the boundary between the annular and rod
structures for a two-phase mixture obtained by processing our data and those of [4, 6-9]:

V= O]
where

o ) )
_ ( ReFr p_p_)f . Ve (8.2—0.00175E"%) exp (8 -+ 621) Byl;
— M2
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Fig. 3. Comparison of the theoretical
relationship of (4) with the experi-
mental data: 1) our data; data of [6]
(steam—water mixtures, vertical tube
with D = 10.2 mm); 2) p = 3.5 MPa; 3)

p = 7 MPa; data of [4] (air—oil mix-
tures, vertical tubes with D = 15.2 and
32:7 mm): 4) ¥ = 1,02 107%; 5) "= 4,04
1074 6) W = 1.27+ 107%; 7) data of [7];
8) [8]; 9) [9].

Re = ucDjvg; 1/v; = Byfv, + ﬁz/"z-

One gets a rod structure when the left side of (4) is larger than the right and an annular
one when the converse applies. ' '

Figure 3 compares calculations from (4) with the available experimental data.

There are two groups of methods for calculating the hydraulic resistance for an annular
flow of a gas—1liquid mixture. The first includes the use of separated models, in which one
examines the motion of each phase, while the conditions at the interface are defined by means
of semiempirical theories [3, 10, 11]. It is difficult to set up engineering calculation
methods on the basis of these models because we lack an adequate volume of experimental evi-
dence on the local characteristics of annular flows and phenomena at the phase boundary.

In practical applications, the main use is made of methods based on homogeneous models,
which use various methods of averaging the flow and physical characteristics over the cross
‘gection and with respect to time [2, 12]. The essence of this is to define the relationship
between the resistance coefficient and the defining criteria.

To determine the hydraulic-resistance coefficient, we use a'one—dimensional equation
of motion: B '

dp 2 2 2 . .
FRl CTE: PR 5

The parametric dependence for A, is solved in the form [13]'

A = Ao (Re; &) \P, (6)

where Xo(Re; €) is the resistance coefficient for the flow of a homogeneous medium, which is
dependent on the Reynolds number and on the relative roughness. .

The experimental data on the reduced hydraulic-resistance coefficient for tubes of
various diameters are clogely described by means of the Froude number [4] in the case of a
rod structure, and empirical formulas for y are constructed in the form

=9 B; p; Fr). N
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‘Fig. 4. Dependence of the reduced hydraulic-resistance co-
efficient for a gas—liquid flow on the flow-rate liquid con-
tent and mixture speed for tubes of various diameters (a) and
for various viscosities of the liquid phase (b): a) D = 9.1 mm:
1) u. = 10 m/sec; 2) 1l4; 3) 20; D = 15.2 mm: 4) u, = 8 m/sec;

5) 10; 6) 12; 7) 1l4; 8) 16: 9) 20; 10) 25; 11) 30; D = 32.7

mm: 12) ue = 8 m/sec; 13) 10; 14) 12; b) u. = 6 m/sec: 1)

Uy =1°10~° Nesec/m?; 2) 7.8¢10~>; 3) 11.3+10"3; 4) 19.10~>; u. =
8 m/sec; 5) up = 141072 Nesec/m?; 6) 7.8<10~%; 7) 11,3-103;

8) 19:10~%; u, = 10 m/sec; 9) uz = 1+10° Nesec/m*; 10) 16,3-
10=%; 11) 93-10=3%; 12) 104+103; uc = 12 m/sec; 13) u, = 1
10~° Nesec/m?; 14) 7.8+107%; 15) 11.3+107%; 16) 19+10~%; uc =
15 m/sec; 17) p; = 1¢10™%; Nesec/m?*; 18) 16.3+10~3; 19) 93+ 10-°,

To define the criteria for the reduced coefficients for an annular flow, we performed
three series of experiments with gas— liquid mixtures in horizontal tubes. The first series
involved in air—water mixture in glass tubes of internal diameters D = 9.1, 15.2, and 32.7
mm at atmospheric pressure. The measurements were made with speeds of u, = 8, 10, 12, 14, 16,
20, 25, and 30 m/sec. The pressure difference was measured with a U differential manometer.
There were separating vessels to prevent the liquid from entering the pulse lines. The true
volume concentrations required in (5) were measured by the cutoff method. Measurements with
air were used to determine Xy = Ao (Re; €) for the tubes.

Figure 4a shows the results processed from (5) and (6). The Reynolds number for the
mixture was defined as

Re = ueD (B/v, + Ba/v2)- (8)
No matter what the tube diameter, the points lie along a line of constant mixture speed,
which indicates that a criterion not containing the diameter should be the definitive one
for the reduced coefficient with an annular structure.

To establish the detailed form of the relationship for the resistance coefficient, we
made measurements with gas— 1iquid mixtures having various viscosities (from 107 to 104 x
10™® N - sec/m?).

In the second series of experiments, the measurements were made at fixed values of Re;Fr;
the homogeneous-liquid resistance coefficient was derived from the definition of the Reynolds
number in (8). The results separated in accordance with the viscosity of the liquid.

The third series of experiments was performed with given velocities u, = 6, 8, 10, 12,
and 15 m/sec. Here X was calculated for

Re = u.D}v,. (9

Figure 4b shows the results from this series. No matter what the viscosity of the
liquid phase, the points fall along lines corresponding to constant velocities.
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We use the data of [11] to incorporate the effects of the component demsities om .

The following is the empirical formula for the reduced resistance coefficient with an
annular structure for a gas—liquid mixture:

$ = 1+ 0.0033 (ReFr -‘1’—1"-2-) e exp [— 15 (p + By)] /' T00B; - .(10)
P

The value of Ao was determined for the value of the Reynolds number given by (9).

NOTATION

u, viscosity, m/sec; p, pressure, Pa; D, internal tube diameter, m; p, density, kg/m®;
4, dynamic viscosity, N sec/m*; v, kinematic viscosity, m*/sec; o, surface tension, N/m; B,
volumetric flow rate concentration, dimensionless; ¢, true volumetric concentration, dimen-
sionless; g, acceleration of gravity, m/sec®; A, hydraulic resistance coefficient, dimension-
less; y, reduced hydraulic resistance coefficient, dimensionless; ¢, relative roughness, di-
mensionless; x, coordinate along the axis parallel to the horizontal plane, m; «, angle of
inclination to the horizontal plane, deg. Numbers: Reynolds, Re; Froude, Fr. Subscripts:
1, liquid; 2, gas; ¢, mixture; b, bubbling.
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